Perfect Software...and other
illusions about testing

Gerald M. Weinberg

Why Do We Bother Testing

Striving for perfection

Not making decisions

Not recognizing all the information needed for decision-making
Putting wrong priorities on various risks

Believing testing can improve a product

Believing there’s a "‘testing phase"’ during which all testing — and only testing — is done

What Testing Cannot Do

Not honoring testers

Over-honoring testers

Scapegoating testers

Not using the information gleaned from testing or other sources
Making decisions that are emotional, not rational

Not evaluating the quality of test data

Testing without adequate preparation

Failing to coordinate testing with the rest of a project

Rushing the teters



e Not insisting on due diligence from managers
e Assuming that others’ decisions are not rational just because the don’t agree with yours

e Not realizing there is more than one use for information from testing

Why Not Just Test Everything?

ne

e Demanding "‘test everything"’

e Not understanding sampling

e Spending too much for information that’s not worth it
e Testing for the sake of appearance

e Not using all sources of information

e Thinking that machines can perform exhaustive testing, even if people can’t

e Increasing risk by constraining resources

What’s the Difference Between Testing and
Debugging?

e Thinking that locating errors can be scheduled

e Not considering time lost to task-switching

e Treating testing as a low-priority task that can be interrupted for just about any reason
e Demanding that testers pinpoint every failure

e Demanding that testers locate every fault

e Repairing without retesting

e Ignoring cross-connections

e Paying insufficient attention to testability

"o

e Insisting that all bugs be "‘reproducible

ne

e Confusing testing with "‘creating and executing test cases"’

e Demanding process overhaul in your company

Page 2



5 Meta-Testing

Believing that all relevant information is contained in test reports
Believing you can sit in your office and know what is going on with testing
Believing that tests can "‘prove"’ anything correct

Believing that the mere existence of documents has some value

Allowing the list of bugs pending assessment/fixing/assignment to grow beyond human
comprehension

Blaming people so they feel motivated to hide bugs

Rewarding people for going through the motions

Not recording every identified failure

Over-recording every identified failure

Letting emotions determine what is tested and reported

Using phony models to assess progress

Assuming the official process description is always followed reliably and correctly
Believing in objectivity

Failing to review carefully any document produced using a template

6 Information Immunity

Failing to notice when people are fearful

Creating a fearful environment

Allowing your fears to override the facts when making decisions

Allowing your hopes to override facts when making decisions

Indulging in compulsive behavior

Assuming that any argument against your own point of view is part of a pathology
Outright denial

Thinking it can’t happen here

Page 3



7 How to Deal With Defensive Reactions

e Failing to take differences into account

Telling people they don’t care about quality

Leaving your brain outside

Being overcritical of yourself

Not being critical of yourself

8 What Makes a Good Test?

e Not thinking about what information you’re after

e Measuring testers by how many bugs they find

e Believing you can know for sure how good a test is

e Failing to take context into account

e Testing without knowledge of the product’s internal structure

e Testing with too much knowledge of the product’s internal structure

e Giving statistical estimates of bugs as if the numbers were fixed, certain numbers

"o

e Failing to apply measures of "‘badness"’ to your tests
e Not ensuring that development is done well

e Not considering the loss of testing efficiency caused by numerous found bugs

9 Major Fallacies About Testing

e Believing that blame works in the long run

e Believing that your first imrpression of a problem is always correct

"o

e Believing that you can test anything "‘exhaustively

L1

e Thinking you can develop software "‘quick and dirty"’ and then test quality in
e Skipping unit testing as redundant because system testing will catch all the bugs

e Skipping system testing in the belief that it’s redundant because unit testing will catch
all the bugs

e Expecting testing to produce quality

Page 4



10 Testing Is More Than Banging Keys

Thinking a computer cann read minds

Failing to verify software sales claims

Failing to use coverage tools (for example, The White Glove Test) in your testing
Thinking that coverage tests prove something is tested

Confusing process documents with processes

Confusing document with facts

"ne

Failing to "‘eat your own dog food"’
Using only non-representative "‘dogs"” in a Dog Food Test
Failing to test your testers, or testing them too much

Pretending demonstrations are tests

11 Information Intake

Not thinking about what information you’re after

Not actively seeking the information you’re after
Conflating intake and meaning

Forbidding testers to look for bugs in certain places
Failing to provide adequate equipment and tools for testing

Succumbing to The Golden Elephant Syndrome

12 Making Meaning

Jumping to conclusions about what data mean

Running tests without documenting the expected results in advance
Over-documenting expected results in advance

Trying to make meaning all by yourself

Thinking that meaning completely determines significance

Page 5



13

14

15

Determining Significance

Confusing repair difficulty with significancy

Misjudging the significance of the speed of a response

Failing to realize that significance is political

Believing there is a "‘rational"’ or objective way to assess significance
Allowing bullaby language to influence your assessment of significance

Ignoring the significance of your actions on the project team itself

Making a Response

Depending on luck
Reducing test time and resources to make a schedule

Failing to adjust schedules and estimates as testing provides information on the actual
state of the product

Failing to collect process data
Not understanding when testing starts

Testing a deas horse

Preventing Software Testing from Growing More
Difficult

Underestimating the complexity of old, patched-up code

Not allowing these matters to be discussed, let alone measured

Failing to adjust process data as current experience indicates

Using early returns as indicator of later results

"ne

Thinking about testers as "‘the bad guys who prevent delivery"’

Testers thinking of themselves as "‘quality poilice"’

Page 6



16 Testing Without Machinery

e Not recognizing the value of technical reviews as a complementary form of testing

e Falling for one of the many arguments for skipping technical reviews (or any part of
your process, for that matter)

e Using technical reviews as punishment

e Skipping reviews to save time

e Failing to review designs and code for testability
e Failing to include tester as reviewers

e Failing to recognize the value of learning

17 Testing Scams

e Relying solely on numbers to manage a project

e Accepting testimonials through a third party

18 Oblivious Scams

e Using ealry reports of errors from a shipped product to estimate total errors shipped
e Making bug reporting tedious or inconvenient

e Creating a blaming environment that encourages falsified test reporting

e Rewarding form over context

e Rewarding quantitiy over quality

Page 7



