
Perfect Software. . . and other
illusions about testing

Gerald M. Weinberg

1 Why Do We Bother Testing
� Striving for perfection

� Not making decisions

� Not recognizing all the information needed for decision-making

� Putting wrong priorities on various risks

� Believing testing can improve a product

� Believing there’s a "‘testing phase"’ during which all testing – and only testing – is done

2 What Testing Cannot Do
� Not honoring testers

� Over-honoring testers

� Scapegoating testers

� Not using the information gleaned from testing or other sources

� Making decisions that are emotional, not rational

� Not evaluating the quality of test data

� Testing without adequate preparation

� Failing to coordinate testing with the rest of a project

� Rushing the teters

1



� Not insisting on due diligence from managers

� Assuming that others’ decisions are not rational just because the don’t agree with yours

� Not realizing there is more than one use for information from testing

3 Why Not Just Test Everything?
� Demanding "‘test everything"’

� Not understanding sampling

� Spending too much for information that’s not worth it

� Testing for the sake of appearance

� Not using all sources of information

� Thinking that machines can perform exhaustive testing, even if people can’t

� Increasing risk by constraining resources

4 What’s the Difference Between Testing and
Debugging?
� Thinking that locating errors can be scheduled

� Not considering time lost to task-switching

� Treating testing as a low-priority task that can be interrupted for just about any reason

� Demanding that testers pinpoint every failure

� Demanding that testers locate every fault

� Repairing without retesting

� Ignoring cross-connections

� Paying insufficient attention to testability

� Insisting that all bugs be "‘reproducible"’

� Confusing testing with "‘creating and executing test cases"’

� Demanding process overhaul in your company

Page 2



5 Meta-Testing
� Believing that all relevant information is contained in test reports

� Believing you can sit in your office and know what is going on with testing

� Believing that tests can "‘prove"’ anything correct

� Believing that the mere existence of documents has some value

� Allowing the list of bugs pending assessment/fixing/assignment to grow beyond human
comprehension

� Blaming people so they feel motivated to hide bugs

� Rewarding people for going through the motions

� Not recording every identified failure

� Over-recording every identified failure

� Letting emotions determine what is tested and reported

� Using phony models to assess progress

� Assuming the official process description is always followed reliably and correctly

� Believing in objectivity

� Failing to review carefully any document produced using a template

6 Information Immunity
� Failing to notice when people are fearful

� Creating a fearful environment

� Allowing your fears to override the facts when making decisions

� Allowing your hopes to override facts when making decisions

� Indulging in compulsive behavior

� Assuming that any argument against your own point of view is part of a pathology

� Outright denial

� Thinking it can’t happen here

Page 3



7 How to Deal With Defensive Reactions
� Failing to take differences into account

� Telling people they don’t care about quality

� Leaving your brain outside

� Being overcritical of yourself

� Not being critical of yourself

8 What Makes a Good Test?
� Not thinking about what information you’re after

� Measuring testers by how many bugs they find

� Believing you can know for sure how good a test is

� Failing to take context into account

� Testing without knowledge of the product’s internal structure

� Testing with too much knowledge of the product’s internal structure

� Giving statistical estimates of bugs as if the numbers were fixed, certain numbers

� Failing to apply measures of "‘badness"’ to your tests

� Not ensuring that development is done well

� Not considering the loss of testing efficiency caused by numerous found bugs

9 Major Fallacies About Testing
� Believing that blame works in the long run

� Believing that your first imrpression of a problem is always correct

� Believing that you can test anything "‘exhaustively"’

� Thinking you can develop software "‘quick and dirty"’ and then test quality in

� Skipping unit testing as redundant because system testing will catch all the bugs

� Skipping system testing in the belief that it’s redundant because unit testing will catch
all the bugs

� Expecting testing to produce quality

Page 4



10 Testing Is More Than Banging Keys
� Thinking a computer cann read minds

� Failing to verify software sales claims

� Failing to use coverage tools (for example, The White Glove Test) in your testing

� Thinking that coverage tests prove something is tested

� Confusing process documents with processes

� Confusing document with facts

� Failing to "‘eat your own dog food"’

� Using only non-representative "‘dogs"’ in a Dog Food Test

� Failing to test your testers, or testing them too much

� Pretending demonstrations are tests

11 Information Intake
� Not thinking about what information you’re after

� Not actively seeking the information you’re after

� Conflating intake and meaning

� Forbidding testers to look for bugs in certain places

� Failing to provide adequate equipment and tools for testing

� Succumbing to The Golden Elephant Syndrome

12 Making Meaning
� Jumping to conclusions about what data mean

� Running tests without documenting the expected results in advance

� Over-documenting expected results in advance

� Trying to make meaning all by yourself

� Thinking that meaning completely determines significance

Page 5



13 Determining Significance
� Confusing repair difficulty with significancy

� Misjudging the significance of the speed of a response

� Failing to realize that significance is political

� Believing there is a "‘rational"’ or objective way to assess significance

� Allowing bullaby language to influence your assessment of significance

� Ignoring the significance of your actions on the project team itself

14 Making a Response
� Depending on luck

� Reducing test time and resources to make a schedule

� Failing to adjust schedules and estimates as testing provides information on the actual
state of the product

� Failing to collect process data

� Not understanding when testing starts

� Testing a deas horse

15 Preventing Software Testing from Growing More
Difficult

� Underestimating the complexity of old, patched-up code

� Not allowing these matters to be discussed, let alone measured

� Failing to adjust process data as current experience indicates

� Using early returns as indicator of later results

� Thinking about testers as "‘the bad guys who prevent delivery"’

� Testers thinking of themselves as "‘quality poilice"’

Page 6



16 Testing Without Machinery
� Not recognizing the value of technical reviews as a complementary form of testing

� Falling for one of the many arguments for skipping technical reviews (or any part of
your process, for that matter)

� Using technical reviews as punishment

� Skipping reviews to save time

� Failing to review designs and code for testability

� Failing to include tester as reviewers

� Failing to recognize the value of learning

17 Testing Scams
� Relying solely on numbers to manage a project

� Accepting testimonials through a third party

18 Oblivious Scams
� Using ealry reports of errors from a shipped product to estimate total errors shipped

� Making bug reporting tedious or inconvenient

� Creating a blaming environment that encourages falsified test reporting

� Rewarding form over context

� Rewarding quantitiy over quality

Page 7


