
The Magazine for Agile Developers and Agile Testers

© Tyler Olson - Fotolia.com

October 2010

issue 4www.agilerecord.com	 	free	digital	version	 	made	in	Germany

49www.agilerecord.com

The	 software	 business	 resides	 in	 a	 constant	 crisis.	 This	 crisis	
has	already	lasted	since	the	sixties,	and	every	decade	since	then	
seems	to	have	had	an	answer	to	it.	Among	the	most	popular	and	
most	recent	movements	were	the	Software	Engineering	and	the	
Agile	movement.	In	his	book	Software Craftsmanship - The New
Imperative	[1]	Pete	McBreen	argues	against	the	engineering	me-
taphor	and	explains	why	it	just	holds	for	very	large	or	very	small	
projects,	but	not	for	the	majority,	the	medium	sized	software	de-
velopment	projects.

As	Albert	Einstein	said,	“We cannot solve our problems with the
same thinking we used when we created them”.	 So	 far,	 every	
aspect	of	the	software	crisis	turned	out	to	be	self	inflicted	in	or-
der	 to	sell	 training	or	educational	courses	on	 the	solution	 that	
happened	 to	 be	mainstream	at	 the	 time.	 Since	essentially, all
models are wrong, but some are useful	(George	Box),	this	article	
will	take	a	closer	look	at	the	useful	aspects	of	the	latest	answers	
to	the	software	crisis,	software	engineering	and	craftsmanship.

To	avoid	any	confusion,	the	term	software	development	in	this	ar-
ticle	will	mean	programming,	testing,	documenting	and	delivery.	
Similarly,	a	software	developer	may	be	a	programmer	as	well	as	
a	tester,	a	technical	writer	or	a	release	manager.	I	will	provide	a	
compelling	view	on	the	overall	development	process	and	compa-
re	it	to	the	terms	we	may	have	adapted	from	similar	models	like	
Software	Engineering	or	Software	Craftsmanship.

From Software Engineering...
Engineering	consists	of	many	trade	offs.	For	example,	an	engi-
neer	developing	a	car	makes	several	trade	offs:

•	 fuel	consumption	vs.	horse	power

•	 horse	power	vs.	final	price

•	 engine	size	vs.	car	weight.

An	engineer	considers	these	variables	when	constructing	a	car	
and	uses	a	trade	off	decision	to	achieve	a	certain	goal	that	the	

car	manufacturer	would	like	to	reach.	Thereby	he	will	ensure	that	
the	car	is	safe	enough	given	the	time	he	has	to	develop	the	car.

Software	programmers	as	well	as	software	testers	also	deal	with	
trade	offs	in	their	daily	work.	For	example,	a	software	tester	con-
siders	the	cost	of	automation	and	the	value	of	exploration.	The	
more	time	the	tester	spends	on	automating	tests,	the	less	time	
there	is	for	exploring	the	product.	The	more	time	is	spent	on	ex-
ploration,	the	less	time	will	be	available	to	automate	regression	
tests	for	later	re	use.	Figure	1	illustrates	this	trade	off.

The	level	of	automated	testing	constitutes	another	trade	off	deci-
sion.	Automating	a	test	at	a	high	system	level	comes	with	the	risk	
of	 reduced	stability	due	 to	many	dependencies	 in	 the	surroun-
ding	code.	Automating	 the	same	 test	at	a	 lower	unit	 level	may	
not	cover	inter	module	integration	problems	or	violated	contracts	
between	two	modules.	Figure	2	shows	this	trade	off.

©
 M

arzanna Syncerz - Fotolia.com

Developing Software Development
by Markus Gärtner

Figure 1: The exploration vs. automation trade off in software testing

50 www.agilerecord.com

Similarly,	 there	are	four	such	trade	offs	mentioned	in	the	Agile	
Manifesto.	The	last	sentence	makes	them	explicit:

“That	is,	while	there	is	value	in	the	items	on	the	right,	we	value	
the	items	on	the	left	more.”

Using	the	same	graphical	representation	as	before,	figures	3(a)	
3(d)	illustrate	the	values	from	the	Agile	Manifesto:

At	 times	a	 software	project	 calls	 for	more	documentation.	 The	
project	members	by	then	are	better	off	spending	more	time	on	
documentation	and	less	time	on	creating	the	software,	thereby	
creating	less	software.	Similarly,	for	a	non	collaborative	customer	
more	time	may	be	spent	on	negotiating	the	contract.	The	trade	
offs	between	individuals	and	interactions	as	opposed	to	process-
es	and	tools	as	well	as	responding	to	change	opposed	to	follow-
ing	a	plan	need	 to	be	decided	 for	each	software	project.	Agile	
methods	prefer	the	light-weight	decisions	to	these	trade	offs,	but	
keep	themselves	open	for	heavy	weight	approaches	when	project	
and	context	call	for	it.

... towards craftsmanship ...
In	 his	 book[1],	 Pete	 McBreen	 describes	 the	 facets	 of	 crafts-
manship	 by	 and	 large.	We	have	 to	 keep	 in	mind,	 though,	 that	
craftsmanship	 just	 like	engineering	provides	another	model	on	
how	software	development	can	work.	This	model	is	suitable	for	
understanding	the	basic	principles,	but,	as	with	every	model,	 it	

leaves	out	essential	details	resulting	in	a	simplified	view	on	the	
overall	system.

McBreen’s	main	point	is	that	the	software	engineering	metaphor	
does	not	provide	a	way	to	introduce	people	new	to	software	de-
velopment	to	their	work.	Therefore	he	introduces	the	craft	meta-
phor.	The	Software	Engineering	model	does	not	provide	an	an-
swer	on	how	to	teach	new	junior	programmers,	testers,	technical	
writers,	and	delivery	managers	on	their	job.	And	in	fact,	Prof.	Dr.	
Edsger	W.	Dijkstra	already	noticed	this	in	1988.	Back	then,	Dijk-
stra	wrote	an	article	on	the	cruelty	of	really	 teaching	computer	
science	[2].	According	to	Dijkstra,	the	engineering	metaphor	for	
software	 development	 and	 delivery	 leaves	 too	much	 room	 for	
misconceptions,	since	the	model	lacks	essential	details.

The	craft	analogy	provides	a	model	for	teaching	people	new	to	
software	development	 on	 the	 job,	 and	does	 so	 in	 a	 collabora-
tive	manner	by	choosing	practices	to	follow,	deliberate	learning	
opportunities	and	providing	the	proper	slack	to	learn	new	tech-
niques	and	practices.	All	these	aspects	are	crucial	to	keep	the	de-
velopment	process	vital.	Experienced	people	teach	their	younger	
colleagues.	 The	 younger	 colleagues	 learn	 how	 to	 do	 software	
development	while	working	on	a	project.	By	 taking	 the	 lessons	
learned	directly	into	practice,	new	and	inexperienced	workers	get	
to	 know	 how	 to	 develop	 software	 in	 a	 particular	 context.	 Over	
time,	this	approach	creates	a	solid	basis	for	further	development	
in	software	and	as	well	as	personal.

... and beyond
There	are	other	aspects	 in	 the	craft	metaphor,	although	 these	
ideas,	too,	had	been	flowing	around	since	the	earlier	days	of	the	
Software	Engineering	movement.	Taking	pride	in	your	daily	work,	
caring	 for	 the	 needs	 of	 the	 customer,	 and	 providing	 the	 best	
product	within	the	given	time,	money	and	quality	considerations	
that	the	customer	made.	Of	course,	every	software	development	
team	member	is	asked	to	provide	their	feedback	on	the	feasibili-
ty	of	the	product	to	be	created.	This	includes	providing	a	personal	
view	on	the	trade	offs	that	each	individual	makes	to	estimate	the	
targeted	costs	and	dates.

Software Development
Dijkstra	wrote	 in	 late	1988	about	 the	 cruelty	 of	 analogies	 [2].	
Likewise,	a	 few	years	earlier	Frederick	P.	Brooks	discussed	the	
essence	and	the	accidents	of	past	software	problems	[3].	Brooks	
stated	that	he	did	not	expect	any	major	breakthrough	in	the	soft-
ware	world	during	 the	ten	years	between	1986	and	1996	that	
would	improve	software	development	by	any	order	of	magnitude.	
Reflecting	back	on	the	1990s,	his	point	seems	to	hold	to	a	cer-
tain	degree.

Since	 these	 two	pioneers	 in	 the	field	of	 software	development	
wrote	down	the	prospects	of	future	evolutions,	another	decade	
has	past.	Reflecting	on	the	points	they	made	about	a	quarter	of	a	
century	ago,	most	of	them	still	hold.	However,	the	past	ten	years	
of	software	development	with	Agile	methods,	test	driven	devel-
opment	and	exploratory	testing	approaches	show	some	benefits	
in	practice.	What	we	as	a	software	producing	 industry	need	 to	
keep	in	mind,	however,	is	the	fact	that	software	engineering	as	

Figure 3: The four Agile value statements as trade offs

Figure 2: The composition decomposition trade off in software testing

51www.agilerecord.com

well	as	software	craftsmanship	are	analogies,	or	merely	models.	
They	provide	heuristics,	and	heuristics	are	fallible.	On	the	other	
hand,	these	models	provide	useful	 insights	that	help	us	under-
stand	some	fractions	of	our	work.	The	models	focus	on	a	certain	
aspect	of	the	development	process,	while	leaving	out	details	that	
may	be	essential	at	times	but	not	for	the	current	model	in	use.

From	the	engineering	metaphor,	trade	offs	are	useful.	Given	the	
complexity	 of	most	 software	projects,	 trade	offs	provide	a	way	
to	keep	 the	project	under	control,	while	still	delivering	working	
software.	Systems	thinking	can	help	to	see	the	dynamics	at	play	
to	make	decisions	based	on	trade	offs.	From	the	craft	analogy,	
apprenticeships	help	to	teach	people	on	the	job	and	help	them	
master	their	skills.	Where	traditional	education	systems	fail,	the	
appealing	of	direct	cooperation	with	an	apprentice	helps	to	teach	
people	relevant	facets	of	their	day	to	day	work.

While	the	analogies	help,	we	need	to	keep	in	mind	what	Alistair	
Cockburn	found	out	in	his	studies	on	software	projects	[4]:

•	 Almost	any	methodology	can	be	made	to	work	on	some	proj-
ects.

•	 Any	methodology	can	manage	to	fail	on	some	projects.

That	said,	the	analogies	apply	at	times.	We	need	to	learn	when	a	
model	or	analogy	applies	in	order	to	solve	a	specific	problem,	and	
when	to	use	another	model.	No	single	analogy	holds	all	the	time,	
so	finally	creating	and	maintaining	a	set	of	analogies	is	essential	
for	the	people	in	software	development	projects,	in	order	to	com-
municate	and	collaborate.	■

References
[1]	 Software	 Craftsmanship	 The	 New	 Imperative,	 Pete	 Mc-

Breen,	Addison	Wesley,	2001

[2]	 On	 the	 cruelty	 of	 really	 teaching	 computing	 science,	 Prof.	
Dr.	Edsger	W.	Dijkstra,	University	of	Texas,	December	1988

[3]	 No	 Silver	 Bullet	 Essence	 and	 Accidents	 of	 Software	 Engi-
neering,	Frederick	P.	Brooks,	Jr.,	Computer	Magazine,	April	
1987

[4]	 Characterizing	people	as	non	linear,	first	order	components	
in	 software	 development,	 Alistair	 Cockburn,	 Humans	 and	
Technology,	1999

Markus Gärtner
is a senior software de-
veloper for it-agile GmbH
in Hamburg, Germany.
Personally committed to
Agile methods, he believes
in continuous improve-
ment in software testing
and programming through
skills. Markus co-founded
the European chapter on

Weekend Testing in 2010. He blogs at blog.shino.de
and is a black-belt in the Miagi-Do school of software
testing.

> About the author

